Analysis of Various Al
Models with and without
Clustering for Stellar
Classification

MSc Research Project
MSc Artificial Intelligence TopUp

Marcin Pelech
Student ID: 23201789

School of Computing
National College of Ireland

Supervisor: Dr. Devanshu Anand

August 2025

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Marcin Pelech

Student ID: 23201789

Programme: MSc Artificial Intelligence TopUp

Year: 2025

Module: MSc Research Project

Supervisor: Dr. Devanshu Anand

Submission Due Date: | 11/08/2025

Project Title: Analysis of Various Al Models with and without
Clustering for Stellar Classification

Word Count:

Page Count: 33

I hereby certify that the information contained in this (my submission) is in-
formation pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the rele-
vant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are required to use the Referencing Standard specified in the report template.
To use other authors’ written or electronic work is illegal (plagiarism) and may
result in disciplinary action.

Signature: | Marcin Pelech
Date: 11th August 2025

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECK-
LIST:

e Attach a completed copy of this sheet to each project (including multiple
copies).

e Attach a Moodle submission receipt of the online project submission to
each project (including multiple copies).

e You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

e Assignments that are submitted to the Programme Coordinator office
must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Abstract

Today, artificial intelligence is used in many fields and is showing great per-
formance in a wide range of areas. It can analyse large data sets and provide
accurate predictions in a short period of time. Implementing Machine Learning
Algorithms in Astrophysics where Each Observatory or Satellite Generates an
enormous number of data could help to interpret findings and provide better
insides to data collected. AI Algorithms not only get accurate predictions but
are also quite fast when working with large datasets. They are free of human
error, saving time and they handle tasks that couldn’t be done by humans in
reasonable time. Stellar Classification is a fundamental part of astronomy and
aims to classify stars by their spectral characteristics. This project will clas-
sify astronomical objects to: Star, Quasar or Galaxy by using and comparing
various AI models like: Classification: Support Vector Machines, K-Nearest
Neighbors, Random Forest, Decision Tree, Naive Bayes, Convolutional Neural
Network (CNN); Regression: Support Vector Regression, Decision Tree Regres-
sion, Random Forest Regression, Linear Regression. A key component of this
study is the comparison of model performance on datasets with and without
clustering. Among all models, the Random Forest Classifier trained on non-
clustered data achieved the highest accuracy of 98.32%, slightly outperforming
its clustered counterpart by 0.01%. However, Naive Bayes showed the most
significant improvement with clustering, increasing its accuracy from 91.47% to
94.03%. The CNN model also benefited from clustering, improving its accuracy
from 97.36% to 97.43%. These findings highlight the effectiveness of ensemble
learning techniques and suggest that unsupervised preprocessing like clustering
can enhance performance for specific models. Overall, this study demonstrates
the potential of Al in astrophysical data analysis and the impact of clustering
on model accuracy.

Keywords: stellar classification, comparing various AI models, clus-
tering, Sloan Digital Sky Survey (SSDS)

1 Introduction

This study explores a wide spectrum of machine learning techniques includ-
ing traditional classifiers, regression models, and deep learning architectures for
the task of stellar classification using Sloan Digital Sky Survey (SDSS) data.
It also investigates the impact of clustering method, Gaussian Mixture Model
(GMM), as a preprocessing step to enhance model performance. The dataset
is getting preprocessing, including feature scaling, selection, and balancing, to
ensure proper evaluation. Performance is assessed using metrics such as accu-
racy, precision, recall, Fl-score, and R2. By comparing models across different
learning techniques and preprocessing strategies, this thesis aims to identify op-
timal approaches for automated stellar classification. Astrophysicists need to
work with enormous datasets that are collected from many observatories and
satellites. Rubin Observatory (Rubin Observatory 2025) collects 20 terabytes

of data every 24 hours which is like listening Spotify for 50 years or watching
Netflix for three years. (Astrostatistics 2025)Large Synoptic Survey Telescope
(LSST) also produces 20 terabytes of data over one night and there are many
more devices of this type around the Earth and space. Without additional
tools like machine learning preprocesses, these are very large datasets to find
meaningful information’s, patterns, and predictions that could take enormous
amount of human work power. Advancement of machine learning is that these
AT algorithms can work quite fast with these datasets and preprocesses in a rea-
sonable amount of time. Al can predict, and classify stellar objects with very
good accuracy and precision, which provides for astrophysicists great tool that
can speed up they work and save time, eliminating human error and allow to see
patterns/anomalies/outliers across dataset which can hint at new astrophysical
phenomena. Stellar classification is a fundamental part of astronomy, classifying
astronomical objects based on their spectral characteristics, and the accurate
classification of stellar objects is essential for understanding the structure and
evolution of the universe. With the huge data from surveys like SDSS, machine
learning offers scalable solutions to automate this process. In recent years,
many studies have applied machine learning to stellar classification and using
the SDSS dataset with promising results. (Deen Omat at al., (2022)) tested
eight supervised learning models and found that Random Forest achieved 98%
accuracy, correctly classifying all star instances. (Zhuliang Qi at al., (2022))
compared Decision Tree, Random Forest, and Support Vector Machine, report-
ing Random Forest again as the best performer with 98% accuracy. (Tanvi
Mehta at al., (2022)) evaluated six models and concluded that Support Vec-
tor Classifier (SVC) yielded the highest accuracy 97.1%, outperforming others
like KNN and Decision Tree. Mehmet Bilge at al., 2024 enhanced performance
using graph-based feature selection, where XGBoost reached 98.02% accuracy
and 99.81% ROC score, demonstrating the value of feature engineering. While
these studies have made significant progress in applying machine learning to
stellar classification, they often overlook the impact of clustering techniques.
This thesis addresses that gap by evaluating both classification, and regression
models, with and without clustering. It also aims to evaluate the performance
of various AI models, both classification and regression for stellar classification,
and to check the impact of clustering techniques on model accuracy, and finding
out how the clustering techniques affect the performance of Al models. It will
show which model type classification or regression produce higher accuracy for
SDSS data. To ensure the consistency and objectivity of model performance,
this study applies a series of preprocessing techniques to the SDSS dataset.
Feature scaling is performed using StandardScaler, which normalises input data
and prevents models from being biased toward features with larger numerical
ranges. Categorical labels are encoded using LabelEncoder, allowing machine
learning models to interpret non-numeric data effectively. To address class im-
balance, a common issue in astronomical datasets SMOTE (Synthetic Minority
Over-sampling Technique) is employed, generating synthetic samples for mi-
nority classes. Additionally, Local Outlier Factor (LOF) is used to detect and
filter out anomalous data points, improving data quality and reducing noise.

These preprocessing steps together will improve the model, reduce bias, and
ensure consistent performance across classification and regression tasks. The
thesis is organized as follows: Section 2 (Data Description and Prepossessing),
introduces the dataset and outlines the preprocessing steps applied. Section 3
(Models Overview), describes the machine learning models used for stellar clas-
sification. Section 4 (Methodology), details the experimental design, including
clustering techniques and evaluation metrics. Section 5 (Results and Evalua-
tion), presents the experimental results and discusses key findings. Section 6
(Conclusion and Future Work), summarises the study and proposes directions
for future research. Section 7 (Appendices), provides supplementary materials,
including the sample code and extended outputs. Section 8 (Acknowledgments),
expresses gratitude to the contributors and supporters of the research.

2 Related Work

2.1 Classification Models
2.1.1 Support Vector Classifier (SVC)

Support Vector Machines (SVM) are supervised learning models used for classi-
fication tasks, particularly effective in high-dimensional spaces. In this project,
the LinearSVC variant is employed, which uses a linear kernel to find the opti-
mal hyperplane that separates classes with the maximum margin. In the study
by (Omat et al. (2022)), Support Vector Classification (SVC) was used to clas-
sify stellar objects using data from SDSS DR17, their SVC got 97% accuracy.
While their implementation of SVC contributed to high classification accuracy,
the authors did not address key data preprocessing steps such as class balanc-
ing or outlier elimination. In the study by (Tanvi Mehta at al., (2022)) their
implementation of SVC got 97,1% accuracy but as previous researchers they
didn’t address key data preprocessing steps such as class balancing or outlier
elimination.

2.1.2 Decision Tree Classifier

Decision Tree is a supervised learning algorithm that builds a tree-like model
of decisions based on feature values. Decision Tree is intuitive, interpretable,
and capable of handling both numerical and categorical data. In the study by
(Tanvi Mehta at al., (2022)), their implementation of Decision Tree Classifier
got 86,2% accuracy, but didn’t include any method like Synthetic Minority
Over-sampling Technique (SMOTE) to mitigate class imbalance and applying
statistical methods to detect and remove outliers. In the study by (Zhuliang Qi
at al., (2022)), his implementation of Decision Tree Classifier got 97% accuracy
as the author had used SMOTE to balance data, but didn’t use any method to
detect and remove outliers.

2.1.3 K Nearest Neighbors Classifier

K-Nearest Neighbors (KNN) is a non-parametric, instance-based learning al-
gorithm that classifies data points based on the majority class among their
nearest neighbours. It is simple yet effective, particularly in cases where deci-
sion boundaries are irregular or non-linear. The model predicts the class of each
test sample by examining the labels of its k closest training samples, measured
using Euclidean distance. In the study by (Mehmet Bilge at al., (2024)), their
implementation got 89,77%, the author had used graph based features selec-
tion, but didn’t implement any methods to amend data unbalance or outliers
elimination.

2.1.4 Naive Bayes Classifier

Naive Bayes Classifier is a probabilistic classifier based on Bayes’ Theorem,
assuming independence among predictors. While being conceptually simple,
it often performs well on high-dimensional datasets and is effective for text
classification and categorical data. In the study of (Tanvi Mehta at al., (2022)),
their implementation of Naive Bayes Classifier got 87,4% accuracy, the authors
hadn’t used any method to deal with unbalanced data, or to detect and remove
outliers. In study by (Omat et al. (2022)), Naive Bayes Classifier got 91%
accuracy as previous author had used no methods for unbalanced data or outlier
elimination.

2.1.5 Random Forest Classifier

Random Forest is an ensemble learning method that constructs a multitude
of decision trees during training and outputs the mode of the classes for clas-
sification tasks. It is particularly robust to over-fitting and performs well on
high-dimensional datasets with complex feature interactions. In the study by
(Mehmet Bilge et al. (2024)), the author implementation got 97.85% accuracy.

2.1.6 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are deep learning architectures primar-
ily designed for spatial data, such as images and time series. They utilize con-
volutional layers to extract hierarchical features, making them highly effective
for pattern recognition tasks. Although CNNs are traditionally applied to 2D
image data, they can be adapted to 1D inputs for classification tasks involv-
ing structured tabular data. In the study by (Jing-Hang et al. (2022)), their
implementation of CNN got 94.4% accuracy in the classification task on SSDS
dataset.

2.2 Regression Models
2.2.1 Support Vector Regression

Support Vector Regression (SVR) is a powerful supervised learning algorithm
obtained from Support Vector Machines (SVM). SVR is particularly effective in
high-dimensional spaces and for datasets with complex relationships. Couldn’t
find any papers with SVR, probably as it hadn’t performed well.

2.2.2 Random Forest Regressor

The Random Forest Regressor is an ensemble learning method that constructs
multiple decision trees during training and outputs the average prediction of the
individual trees. This approach reduces over-fitting, and improves generalisation
compared to a single decision tree. In the study by (Ahmed Taha et al. (2022)),
the author didn’t use Random Forest Regressor to check if objects are star,
quasar, or galaxy. But they did use it for checking coordinates with high R2,
nearly perfect.

2.2.3 Decision Tree Regressor

Decision Tree Regressor is a non-parametric supervised learning algorithm that
predicts continuous outcomes by recursively partitioning the feature space. It
builds a tree structure, where each internal node represents a decision-based on
feature values, and each leaf node corresponds to a predicted numerical value.
In the study by (Krishna et al. (2024)), the author didn’t use Decision Tree
Regressor to check if objects are star, quasar, or galaxy. But used for checking
redshift estimation with RMS value, which was above 0.16.

2.2.4 Linear Regression

Linear Regression is a fundamental statistical method used to model the rela-
tionship between a dependent variable and one or more independent variables
by fitting a linear equation to observed data.

2.3 Overview

While reviewing existing literature on stellar classification using the SDSS dataset,
it became evident that some techniques have been unexplored. Notably, cluster-
ing algorithms have not been applied in any of the reviewed studies, regardless of
their strength in identifying underlying trends and patterns in unlabelled data.
Additionally, only two papers (Ahmed Taha et al. (2022)), and (Zhuliang Qi
at al., (2022)) were found to implement method for addressing class imbalance,
suggesting that data balancing are rarely implemented in this domain. Further-
more, outlier elimination techniques were used in three papers (Ahmed Taha et
al. (2022)), (Tanvi Mehta at al., (2022)), and (Sabeesh et al. (2022)), even such
preprocessing steps can significantly improve model performance. These gaps

highlight opportunities for methodological innovation and justify the presence
of these techniques in the present study.

3 Methodology

3.1 Dataset Description

This study uses the Stellar Classification Dataset - SDSS17, publicly available
on Kaggle and originally sourced from the Sloan Digital Sky Survey (SDSS)
Data Release 17. The dataset contains 100,000 astronomical observations, each
described by 17 features and a class label indicating whether the object is a
star, galaxy, or quasar. For this project, a subset of seven features and one class
label was selected for training and evaluation: Photometric measurements: u, g,
1, i, z (capturing brightness across five spectral bands) Spectroscopic redshift:
redshift (indicating the object’s velocity and distance) Instrument metadata:
plate (identifying the spectroscopic plate used during observation). This feature
set enables reliable classification and supports both supervised learning and
preprocessing techniques such as clustering.

Table 1: Feature Descriptions in the SDSS Dataset

obj_ID Object Identifier, the unique value
that identifies the object in the
image catalog used by the CAS

alpha Right Ascension angle (at J2000
epoch)

delta Declination angle (at J2000 epoch)

u Ultraviolet filter in the photometric
system

g Green filter in the photometric
system

r Red filter in the photometric system

i Near Infrared filter in the
photometric system

V] Infrared filter in the photometric
system

run_ID Run Number used to identify the
specific scan

rerun_ID Rerun Number to specify how the
image was processed

cam_col Camera column to identify the
scanline within the run

field_ID Field number to identify each field

spec_obj_ID Unique ID used for optical

spectroscopic objects (two
observations with the same ID share
the output class)

class Object class (galaxy, star, or quasar)

redshift Redshift value based on the increase
in wavelength

plate Plate ID, identifies each plate in
SDSS

MJD Modified Julian Date, used to

indicate when a given piece of SDSS
data was taken

fiber_ID Fiber ID that identifies the fiber
pointing light at the focal plane in
each observation

3.2 Preprocessing Steps
3.2.1 Overview

To prepare the dataset for machine learning classification, the following prepro-
cessing steps were applied to the selected features (u, g, r, i, z, redshift, plate,
class) from the SDSS17 dataset:

3.2.2 Missing Value Handling

No missing values were observed in dataset.

3.2.3 Feature Selection

Seven features were selected based on exploratory analysis: five photometric
bands (u, g, 1, i, z), redshift, plate and class.

Table 2: Feature Selected from the Dataset.

u Ultraviolet filter in the photometric
system

g Green filter in the photometric
system

r Red filter in the photometric system

i Near Infrared filter in the
photometric system

Z Infrared filter in the photometric
system

redshift Redshift value based on the increase
in wavelength

plate Plate ID, identifies each plate in
SDSS

class Object class (galaxy, star, or quasar)

3.2.4 Outliers Handling

Outlier Detection and Removal were identified using the Local Outlier Factor
(LOF) algorithm. A threshold at the 3rd percentile of the LOF scores was used
to filter out around 3,000 anomalous samples.

Table 3: Number of Observations per Class

Star 59,445
Galaxy 21,594
Quasar 18,961

Table 4: Updated Number of Observations per Class

Star 58,036
Galaxy 20,460
Quasar 18,504

3.2.5 Resampling for Class Balance

To address class imbalance, SMOTE (Synthetic Minority Over-sampling Tech-
nique) was applied with k_neighbors=5 and random _state = 42. This generated
synthetic samples for the minority classes to balance the distribution:

Table 5: Observations per Class before SMOTE

Star 58,036
Galaxy 20,460
Quasar 18,504

Table 6: Observations per Class after SMOTE

Star 58,036
Galaxy 58,036
Quasar 58,036

3.2.6 Normalization

The features (u, g, r, i, z, redshift, and plate) were standardized using Stan-

dardScaler to ensure a mean of zero and a standard deviation of one across each
feature.

10

3.2.7 Categorical Encoding

The class feature was encoded using Label Encoding to convert it into a numer-
ical format suitable for models input.

3.2.8 Clustering Integration

To find patterns, and possibly improve classification and regression performance,
clustering techniques were integrated into the machine learning pipeline. The
Gaussian Mixture Model (GMM) algorithm was chosen as its best for continuous
numerical data, and u, g, r, i, z, redshift — all continuous.

3.2.9 Train-Test Split

The balanced dataset was split into training (80%) and testing (20%) subsets,
to train and evaluate models.

3.2.10 Evaluation Metrics

To evaluate model performance, a set of metrics were applied to both clas-
sification and regression tasks. For classification models, the metrics included
Speed, Accuracy, Precision, Recall, and F1 Score, giving view of predictive qual-
ity and computational efficiency. In addition to these quantitative metrics, a
confusion matrix was generated for each classifier to visually assess the distri-
bution of correct and incorrect predictions across classes. This matrix provided
deeper insight into model behaviour. For regression models, evaluation focused
on Speed, R2? Score, Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). These metrics together measure
how well the model fits the data, and how large the prediction errors are. To
deepen the understanding of model behaviour, a residual plot was used to vi-
sualize the difference between actual and predicted values. This plot helped
identify patterns or biases in the predictions, which might not be evident from
metrics alone. Together, these evaluation tools ensured a good assessment of
model performance across both classification and regression tasks.

3.2.11 Comparative Analysis

To evaluate the impact of clustering on model performance, both classification
and regression algorithms, were tested on datasets with and without cluster-
ing. For classification tasks, models such as Random Forest, Decision Tree,
K-Nearest Neighbors, CNN, Naive Bayes, and Support Vector Machines were
assessed using key metrics: speed, accuracy, precision, recall, and F1 score.
Some models trained on clustered data outperformed their non-clustered coun-
terparts. Even algorithms traditionally sensitive to noise, like Naive Bayes,
showed improvement in accuracy, precision, and recall when clustering was ap-
plied.

11

3.3 Model Implementation and Overview
3.3.1 Random Forest Classifier

The Random Forest Classifier was implemented using the scikit-learn library.
To determine the optimal number of estimators, a loop was executed from 1 to
19, training the model on the non-clustered and clustered dataset and recording
accuracy for each configuration. The best-performing setup was selected for
both clustered and non-clustered data.

Table 7: Random Forest Classifier Setup Summary

Library scikit-learn
Hyperparameter Tuned n_estimators
Tuning Method Manual iteration with

accuracy tracking

Best Configuration n_estimators = 16
(Without Clustering)
Best Configuration (With | n_estimators = 19
Clustering)
Random State 30 (fixed for

reproducibility)

For evaluation preparation confusion matrices were generated for both clustered
and non-clustered cases to visualize classification performance. The model was
timed during training and prediction to assess computational efficiency. Accu-
racy, precision, recall, and F1 score were calculated using weighted averages.

3.3.2 Decision Tree Classifier

The Decision Tree Classifier was implemented using the scikit-learn library with
default parameters. No hyperparameter tuning was performed, as the model was
intended to serve as a baseline for comparison. The classifier was trained and
tested on both clustered and non-clustered datasets to evaluate the impact of
clustering on performance.

12

Table 8: Decision Tree Classifier Setup Summary

Library
Hyperparameters Tuned

Tuning Method

scikit-learn

None (default
configuration)

Not applicable

Best Configuration Default
(Without Clustering)
Best Configuration (With | Default

Clustering)

Random State 30 (fixed for

reproducibility)

For evaluation preparation confusion matrices were generated to visualize clas-
sification accuracy. Execution time was recorded to assess computational effi-
ciency. Accuracy, precision, recall, and F1 score were calculated using weighted
averages.

3.3.3 K Nearest Neighbors Classifier

The K Nearest Neighbors (KNN) Classifier was implemented using the scikit-
learn library. To determine the optimal number of neighbors (n_neighbors), a
loop was executed from 1 to 19, and accuracy was recorded for each config-
uration. The best-performing value was selected for both clustered and non-
clustered datasets.

Table 9: K Nearest Neighbors Classifier Setup Summary
Library scikit-learn
Hyperparameters Tuned
Tuning Method

Best Configuration
(Without Clustering)

Best Configuration (With
Clustering)

n_neighbors
Manual loop from 1 to 19

nneighbors = 1
nneighbors = 1

Distance Metric minkowski with p = 2

(equivalent to
Euclidean)(default)

uniform (default)

Weighting

13

For evaluation preparation confusion matrix was plotted for visual inspection
of classification performance. Execution time recorded to assess computational
efficiency. Accuracy, precision, recall, and F1 score calculated using weighted
averages.

3.3.4 Support Vector Machines

Support Vector Machines were implemented using LinearSVC from scikit-learn,
wrapped in a pipeline with StandardScaler for feature normalization. Hyperpa-
rameter tuning was performed using grid search with 5-fold cross-validation to
identify the best configuration for both clustered and non-clustered datasets.

Table 10: Support Vector Machines Setup Summary

Library scikit-learn

Model Used LinearSVC

Preprocessing StandardScaler (via
pipeline)

Hyperparameters Tuned C, penalty, loss

Tuning Method GridSearchCV with 5-fold
cross-validation

Best Configuration C = 150, penalty
(Without Clustering) ’12?, loss =

’squared_hinge’
Best Configuration (With | C = 180, penalty

Clustering) ’12° loss =
’squared_hinge’
Max Iterations 10000

For evaluation preparation confusion matrix was plotted to visualize classifica-
tion performance. Execution time recorded to assess computational efficiency.
Accuracy, precision, recall, and F1 score calculated using weighted averages.

3.3.5 Naive Bayes

The Naive Bayes Classifier was implemented using the GaussianNB model from
the scikit-learn library. No hyperparameter tuning was performed, as the algo-
rithm is inherently simple and relies on probabilistic assumptions. The model
was trained and evaluated on both clustered and non-clustered datasets to assess
the impact of clustering on classification performance.

14

Table 11: Naive Bayes Classifier Setup Summary

Library scikit-learn
Model Used GaussianNB
Hyperparameters Tuned None (default

configuration)
Tuning Method Not applicable
Best Configuration Default

(Without Clustering)

Best Configuration (With | Default
Clustering)

Random State Not applicable

For evaluation preparation confusion matrices were generated to visualize classi-
fication performance. Execution time was recorded to assess computational effi-
ciency. Accuracy, precision, recall, and F1 score were calculated using weighted
averages.

3.3.6 Convolutional Neural Network (CNN)

In this study, a 1D CNN was implemented using TensorFlow /Keras to classify
stellar objects from the SDSS dataset. The input features were reshaped to
match the expected format for convolutional layers. The architecture consisted
of a two ConvlD layer followed by a Flatten layer and a Dense output layer
with softmax activation for multiclass classification. To optimize performance,
a grid search was conducted using KerasClassifier to explore hyperparameters.
The best-performing configuration for data with clustering was selected based
on validation accuracy.

15

Table 12: CNN Classifier Setup Summary

Library
Model Type
Conv1lD Activation

Output Layer
Activation

Filters
Kernel Size
Optimizer
Epochs

Best Accuracy

Keras + TensorFlow
ConviD
relu

softmax

64

2

adam
100
97.43%

Keras + TensorFlow
Conv1D
relu

softmax

64

2

adam
80
97.36%

For evaluation preparation confusion matrix and classification report were gen-
erated. Execution time was recorded. Accuracy, precision, recall, and F1 score

were computed using weighted averages.

3.3.7 Support Vector Regression

Support Vector Regression was implemented using LinearSVR from scikit-learn,
wrapped in a pipeline with StandardScaler to normalize input features. Hyper-
parameter tuning was conducted using GridSearchCV to optimize performance

for both clustered and non-clustered datasets.

Table 13: Support Vector Regression Setup Summary

Library
Model Used

C

Epsilon

Loss Function

Scaler
Max Iterations
Best R? Score

scikit-learn

LinearSVR
0.1
0.0
squared._

epsilon_insensitive

StandardScaler
10000
0.2434

scikit-learn

LinearSVR
0.1
0.0
squared._

epsilon_insensitive

StandardScaler
10000
0.2434

16

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R2, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.8 Random Forest Regression

Random Forest Regression was implemented using RandomForestRegressor from
scikit-learn. Hyperparameter tuning was performed using GridSearchCV to find
best configuration for both clustered and non-clustered datasets.

Table 14: Random Forest Regression Setup Summary

Library scikit-learn scikit-learn
Model Used Rachza:;Fsosroerst Ra;edgorn;Fsosroerst
n_estimators 500 500

max_depth None None
min_samples_split 2 2
min_samples_leaf 1 1

Scoring Metric R2 R2

Best R? Score 0.9761 0.9759

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R2, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.9 Decision Tree Regression

Decision Tree Regression was implemented using DecisionTreeRegressor from
scikit-learn. Hyperparameter tuning was performed using GridSearchCV to
find best configuration for both clustered and non-clustered datasets.

17

Table 15: Decision Tree Regression Setup Summary

Library scikit-learn scikit-learn
Model Used De Ri:elgsrleo;s‘Torree De ;el ;rleo;Torree
max_depth 20 20
min_samples_split 15 10
min_samples_leaf 6 6

max_features None None

Scoring Metric R2 R2

Best R? Score 0.9641 0.9634

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R?, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.10 Linear Regression

Linear Regression was implemented using LinearRegression from scikit-learn.
Hyperparameter tuning was performed using GridSearchCV to find best config-
uration for both clustered and non-clustered datasets.

Table 16: Linear Regression Setup Summary

Library scikit-learn scikit-learn

Model Used binear Linear
Regression Regression

fit_intercept True True

positive False False

Scoring Metric R2 R2

Best R? Score 0.2434 0.2434

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R2, Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

18

4 Design Specification

4.1 Clustering

A Gaussian Mixture Model (GMM), is a probabilistic model that assumes your
data is generated from a mixture of several Gaussian distributions, each repre-
senting a cluster. Unlike hard clustering methods like k-means, GMMs perform
soft clustering, assigning probabilities to each data point for belonging to each
cluster. Before using GMM, Principal Component Analysis (PCA) was used to
help clustering algorithms like GMM find better groupings. Principal Compo-
nent Analysis (PCA) is a dimensionality reduction method. It transforms your
original features (like u, g, 1, i, z, redshift, plate) into a new set of features called
principal components. These components capture the most important patterns
in the data while reducing noise and redundancy.

4.2 Hyper parameters

To optimize model performance, a combination of hyper-parameter tuning strate-
gies was employed across different classifiers. For models such as Support Vector
Machines (SVM), Convolutional Neural Network (CNN), and Support Vector
Regression (SVR), a systematic approach using GridSearchCV with 5-fold cross-
validation was applied. This allowed for an exhaustive search over predefined
parameter grids. For other models, including the Random Forest Classifier and
K Nearest Neighbors Classifier a manual loop was executed to iterate over a
range of n_estimators values (from 1 to 19), recording accuracy for each con-
figuration and selecting the best-performing setup. Some models, such as the
Decision Tree Classifier and Naive Bayes, were implemented using default pa-
rameters to serve as baselines. This mixed approach balanced computational
efficiency with thorough exploration, ensuring each model was tuned appropri-
ately for both clustered and non-clustered datasets.

5 Implementation

5.1 Transformed Data

The raw SDSS dataset was cleaned and preprocessed, including handling miss-
ing values, normalization of features, outliers elimination, reassembling for class
balance, categorical encoding, and selection of attributes (u, g, r, i, z, redshift,
plate). Later for comparison second dataset was created with integrated clus-
tering.

5.2 Evaluation Results

Each regression model was evaluated using metrics such as Speed, R2, MSE,
RMSE, MAE. Each classification model was evaluated using metrics such as
Speed, Accuracy, Precision, Recall, F1 Score.

19

5.3 Documentation

Detailed report was compiled. Including methodology, results, and comparative
analysis of model performance.

5.4 Training Setup

5.4.1 Programming Environment

For this study Jupiter Notebook was used.

5.4.2 Programming Language

For this study Python 3.x was used as programming language.

20

5.4.3 Libraries Imported

Table 17: Imported Libraries and Tools Used in Thesis

Data Handling numpy, pandas

Model Selection train_test_split, GridSearchCV

Clustering Gaussian Mixture Model (GMM)
and Principal Component Analysis
(PCA)

Preprocessing StandardScaler, LabelEncoder,
SMOTE, make_pipeline

Visualization matplotlib.pyplot, seaborn

Classification Models SVC, LinearSVC,
KNeighborsClassifier,

RandomForestClassifier,
DecisionTreeClassifier, GaussianNB

Regression Models SVR, LinearSVR,
DecisionTreeRegressor,
RandomForestRegressor,
LinearRegression

Deep Learning tensorflow, Keras layers (Dense,
Dropout, Conv1D, etc.), Sequential,
to_categorical

Model Wrapping scikeras (KerasClassifier)
Evaluation Metrics accuracy_score, confusion_matrix,
precision_score, recall_score,
f1_score, classification_report,

r2_score
Outlier Detection LocalOutlierFactor
Warnings Handling ConvergenceWarning, warnings
Utilities datetime, sklearn.pipeline,

sklearn.exceptions

5.4.4 Hardware Specification

Processor: AMD Ryzen 7 7800X3D 8-Core Processor, 4201 Mhz, 8 Core(s), 16
Logical Processor(s)

OS Name: Microsoft Windows 11 Home

Total Physical Memory: 31.1 GB

Hard Drive: SSD

21

6 Evaluation

This section presents a detailed evaluation of the machine learning models ap-
plied to both classification and regression tasks on the Sloan Digital Sky Survey
(SDSS17) dataset. The performance of each model was assessed using a range of
metrics. For classification, metrics such as accuracy, precision, recall, F1 score,
and execution time were computed using weighted averages to account for class
imbalance and confusion matrix was generated for each model. For regression,
evaluation included R? score, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), execution time, and the resid-
ual plot was created. Additionally, the impact of clustering as a preprocessing
step was analysed by comparing model performance on clustered versus non-
clustered datasets. The results are presented in tabular form to provide clear
comparison and interpretation.

6.1 Classification Models

Table 18: Classification Model Performance Comparison (Without Clustering)

Random 00:00:04.44 98.322% 0.983273 | 0.983229 0.983220
Forest

Classifier
K 00:00:00.85 97.648% 0.976705 0.976480 0.976355
Nearest
Neigh-

bors

Classifier
CNN 00:06:34.25 97.361% 0.973568 | 0.973609 0.973563
Decision 00:00:01.36 97.275% 0.972760 | 0.972747 | 0.972741
Tree

Classifier
Support 00:00:00.34 94.664% 0.946934 | 0.946643 0.946549
Vector

Machines
Naive 00:00:00.02 91.465% 0.915836 | 0.914652 0.914548
Bayes

22

Table 19: Classification Model Performance Comparison (With Clustering)

Random 00:00:04.85 98.314% 0.983173 | 0.983143 0.983132
Forest
Classifier

K 00:00:00.92 97.605% 0.976277 | 0.976050 0.975921
Nearest
Neigh-
bors
Classifier
CNN 00:08:05.78 97.427% 0.974240 | 0.974269 0.974232
Decision 00:00:01.39 97.344% 0.973443 | 0.973436 0.973433
Tree
Classifier

Support 00:00:00.39 95.095% 0.950908 0.950951 0.950884
Vector

Machines
Naive 00:00:00.02 94.033% 0.941266 0.940325 0.940391
Bayes

Table [I9) and Table [I§] present a performance comparison of classification mod-
els trained on clustered and non-clustered datasets. The integration of cluster-
ing techniques into the classification pipeline provide improvements across sev-
eral models. While overall accuracy remained relatively stable, slight increase
in precision, recall, and F1 score were observed in models such as CNN and
Support Vector Machines, suggesting enhanced sensitivity to underlying data
structures. For instance, CNN F1 score increased from 0.973563 to 0.974232,
and SVM accuracy increased from 94.664% to 95.095%. These change indicate
that clustering may help models better capture latent patterns in complex or
imbalanced datasets. Interestingly, Naive Bayes and KNN also showed slight
improvements in recall and precision, showing that clustering can enhance per-
formance. However, the Random Forest Classifier maintained nearly identical
performance, demonstrating that its ensemble nature already captures much of
the data variability. Overall, the results support the presence of clustering as a
valuable preprocessing step, especially for models sensitive to data distribution.

23

Table 20: Precision Comparison of Classification Models

Random Forest
Naive Bayes
Decision Tree
CNN

KNN

SVM

0.983173
0.941266
0.973443
0.974240
0.976277
0.950908

0.983273
0.915836
0.972760
0.973568
0.976705
0.946934

Table 21: Accuracy Comparison of Classification Models

Random Forest
Naive Bayes
Decision Tree
CNN

KNN

SVM

98.314%
94.033%
97.344%
97.427%
97.605%
95.095%

98.322%
91.465%
97.275%
97.361%
97.648%
94.664%

Table 22: Speed Comparison of Classification Models

Random Forest
Naive Bayes
Decision Tree
CNN

KNN

SVM

00:00:04.854
00:00:00.024
00:00:01.394
00:08:05.782
00:00:00.926
00:00:00.392

00:00:04.448
00:00:00.020
00:00:01.364
00:06:34.250
00:00:00.852
00:00:00.343

Table 23: Recall Comparison of Classification Models

Random Forest 0.983143 0.983229
Naive Bayes 0.940325 0.914652
Decision Tree 0.973436 0.972747
CNN 0.974269 0.973609
KNN 0.976050 0.976480
SVM 0.950951 0.946643

Table 24: F1 Score Comparison of Classification Models

Random Forest 0.983132 0.983220
Naive Bayes 0.940391 0.914548
Decision Tree 0.973433 0.972741
CNN 0.974232 0.973563
KNN 0.975921 0.976355
SVM 0.950884 0.946549

Table 25: Confusion Matrix of Random Forest Classifier with Clustering

Galaxy 11547 193 39
Quasar 355 11127 0
Star 0 0 11561

Galaxy 11558 188 33
Quasar 362 11120 0
Star 1 0 11560

25

Table 27: Confusion Matrix of Decision Tree Classifier with clustering

Galaxy 11280 468 31
Quasar 397 11085 0
Star 28 1 11532

Galaxy 11251 497 31
Quasar 397 11085 0
Star 24 0 11537

Galaxy 11109 397 273
Quasar 121 11355 6
Star 34 3 11524

ing

Galaxy 11119 388 272
Quasar 117 11359 6
Star 33 3 11525

Table 31: Confusion Matrix of Support Vector Machines Classifier with Clus-
tering

Galaxy 10816 831 132
Quasar 663 10819 0
Star 82 0 11479

26

Table 32: Confusion Matrix of Support Vector Machines Classifier without Clus-
tering

Galaxy 10617 1029 133
Quasar 583 10899 0
Star 112 1 11448

Table 33: Confusion Matrix of Naive Bayes Classifier with Clustering

Table 34: Confusion Matrix of Naive Bayes Classifier without Clustering

Galaxy 9923 1752 104
Quasar 1012 10470 0
Star 43 61 11457

Table 35: Confusion Matrix of Convolutional Neural Network (CNN) Classifier
with Clustering

Galaxy 11360 311 108
Quasar 464 11017 1
Star 12 0 11549

Table 36: Confusion Matrix of Convolutional Neural Network (CNN) Classifier
without Clustering

Galaxy 11342 313 124
Quasar 472 11008 2
Star 8 0 11553

27

6.2 Regression Models

Table 37: Regression Model Performance Comparison (With Clustering)

Random
Forest
Regressor

Decision
Tree
Regressor

Support
Vector
Regres-
sion
Linear
Regres-
sion

00:06:14.88

00:00:01.15

00:00:00.08

00:00:00.01

0.976096

0.964105

0.243453

0.243407

0.016021

0.024058

0.507058

0.507089

0.126576

0.155106

0.712080

0.712102

0.032079

0.032549

0.578549

0.578461

Table 38: Regression Model Performance Comparison (Without Clustering)

Random
Forest
Regressor

Decision
Tree
Regressor

Support
Vector
Regres-
sion
Linear
Regres-
sion

00:05:59.63

00:00:01.13

00:00:00.07

00:00:00.00

0.975925

0.963368

0.243372

0.243360

0.016136

0.024552

0.507112

0.507120

0.127026

0.156691

0.712118

0.712124

0.032488

0.032306

0.579537

0.579509

Table [37] and Table [38] present a performance comparison of regression models
trained on clustered and non-clustered datasets. The comparative analysis of
regression models reveals that clustering integration has a modest but consis-
tent impact on performance. The Random Forest Regressor show as the top
performer in both scenarios, achieving an R? score of 0.9761 with clustering and
0.9759 without, and the lowest MSE, RMSE, and MAE values. This highlights

28

the good performance capability across different data distributions. The De-
cision Tree Regressor also benefited slightly from clustering, improving its R?
from 0.9634 to 0.9641 and reducing error metrics slightly. In contrast, Support
Vector Regression and Linear Regression showed bad performance between the
two setups, both maintaining low R2 scores (0.243) and high error rates, indicat-
ing limited suitability for this task regardless of clustering. Overall, clustering
enhances model precision slightly for tree-based regressor, while linear models
remain unaffected. These findings support the use of clustering as a preprocess-
ing step when deploying ensemble or tree-based regression algorithms.

Table 39: Execution Time Comparison of Regression Models

Random Forest Re- 00:06:14.882617 00:05:59.636276
gressor

Decision Tree Regres- 00:00:01.150720 00:00:01.131381
sor

Support Vector Re- 00:00:00.086013 00:00:00.072010
gression

Linear Regression 00:00:00.012513 00:00:00.009501

Table 40: R2 Score Comparison of Regression Models

Random Forest Re- 0.976096 0.975925
gressor

Decision Tree Regres- 0.964105 0.963368
sor

Support Vector Re- 0.243453 0.243372
gression

Linear Regression 0.243407 0.243360

Table 41: Mean Squared Error (MSE) Comparison of Regression Models

Random Forest Re- 0.016021 0.016136
gressor

Decision Tree Regres- 0.024058 0.024552
sor

Support Vector Re- 0.507058 0.507112
gression

Linear Regression 0.507089 0.507120

Table 42: Root Mean Squared Error (RMSE) Comparison of Regression Models

Random Forest Re- 0.126576 0.127026
gressor

Decision Tree Regres- 0.155106 0.156691
sor

Support Vector Re- 0.712080 0.712118
gression

Linear Regression 0.712102 0.712124

Table 43: Mean Absolute Error (MAE) Comparison of Regression Models

Random Forest Re- 0.032079 0.032488
gressor

Decision Tree Regres- 0.032549 0.032306
sor

Support Vector Re- 0.578549 0.579537
gression

Linear Regression 0.578461 0.579509

6.3 Comparison Analysis

Classification Models: Random Forest Classifier consistently outperforms other
models in terms of accuracy, precision, recall, and F1 score, achieving over
98.3% accuracy in both clustered and non-clustered scenarios. KNN and CNN
follow closely, with CNN showing slightly improved metrics when clustering is

30

applied. Notable, Naive Bayes benefits significantly from clustering, with its
accuracy rising from 91.47% to 94.03%, suggesting that clustering may enhance
performance for some models. Support Vector Machines also show a modest
improvement in all metrics post-clustering.

Regression Models: Random Forest Regressor again with the highest R2 score
(0.976), lowest MSE (0.016), and minimal MAE (0.032), regardless of clus-
tering. Decision Tree Regressor performs well but slightly below Random For-
est. Linear Regression and Support Vector Regression exhibit poor performance
across all regression metrics, with R? scores around 0.243 and high error values
(MSE ¢, 0.5, RMSE ; 0.71, MAE ; 0.57), indicating limited suitability for the
dataset used. Clustering has small impact on regression performance, except
for marginal improvements in execution time and error reduction.

Overall Insight: Random Forest emerges as the best performer and reliable
model across both classification and regression tasks. Clustering provides slight
improvements in classification metrics for Naive Bayes and SVM, but has min-
imal influence on regression.

7 Conclusion and Future Work

This study investigated the performance of various machine learning models on
SDSS photometric data and evaluated the impact of clustering on both classifica-
tion and regression tasks. The results demonstrate that clustering can enhance
some models performance by improving data structure, reducing noise, and re-
vealing hidden patterns. Artificial Intelligence proves to be a highly effective
and scalable solution for stellar classification, capable of handling large datasets
with precision and speed. In classification, the Random Forest Classifier trained
on non-clustered data achieved the highest accuracy of 98.32%, outperforming
all other models. However, lightweight models such as Naive Bayes benefited
significantly from clustering, with accuracy increasing from 91.46% to 94.03%.
The Convolutional Neural Network (CNN) also showed a modest improvement,
achieving 97.43% accuracy on clustered data compared to 97.36% without clus-
tering. In regression tasks, all models with clustering dataset got slightly better
results indicating that clustering contributes positively to predictive accuracy
across different models.

Future enhancements could include applying Bayesian optimisation or genetic
algorithms for more efficient hyper-parameter tuning. Applying pre-trained
models from similar astronomical datasets may accelerate learning and improve
accuracy. Additionally, deploying models on cloud platforms with distributed
computing could enable real-time classification of massive datasets. Try different
clustering algorithms like DBSCAN, K-Means or Spectral Clustering which may
uncover different structures in the data.

31

8 Acknowledgments

I would like to express my appreciation to my supervisor Prof. Devanshu Anand,
for his guidance and support throughout the course of this research. His feed-
back was helpful in shaping the direction and quality of this thesis.

I am also thankful to the faculty and staff at National College of Ireland for
providing the resources and environment necessary for academic growth.

Special thanks to the Higher Education Authority (HEA) and the Springboard+
initiative for supporting my participation in this program. Their commitment
to providing accessible, high-quality education has enabled me to pursue post-
graduate Computer Science in Al and participate in this research.

Thanks to fedesoriano for Dataset, fedesoriano (January 2022). Stellar Clas-
sification Dataset - SDSS17. Retrieved [June 2025] from
https://www.kaggle.com/fedesoriano/stellar-classification-dataset-sdss17.

Finally, I am grateful to my family and friends for their patience and encour-
agement throughout this journey.

References

Rubin Observatory 2025, Data,
https://rubinobservatory.org/explore /how-rubin-works /technology /data

Astrostatistics 2025, Large Synoptic Survey Telescope (LSST), Data,
https://www.cfa.harvard.edu/research/topic/astrostatisticsDeen

Omat, Jood Otey, Amjed Al-Mousa (2022), ” Stellar Objects Classification
Using Supervised Machine Learning Techniques”,

2022 International Arab Conference on Information Technology (ACIT),
https://doi.org/10.1109/ACTT57182.2022.9994215

Zhuliang Qi (2022), ” Stellar Classification by Machine Learning ” , August
2022SHS Web of Conferences 144(3):03006,
http://dx.doi.org /10.1051 /shscont/202214403006

Tanvi Mehta, Nishi Bhuta, Swati Shinde (2022), “Experimental Analysis of
Stellar Classification by using Different Machine Learning Algorithms”, 2022
International Conference on Industry 4.0 Technology (I4Tech),
https://doi.org/10.1109/14Tech55392.2022.995296

Mehmet Bilge Han Tas, Eyyiip Yildiz (2024) ”Stellar Classification with Ma-
chine Learning Algorithms: Graph-Based Feature Selection Approach”, In In-

32

https://rubinobservatory.org/explore/how-rubin-works/technology/data
https://www.cfa.harvard.edu/research/topic/astrostatisticsDeen
https://doi.org/10.1109/ACIT57182.2022.9994215
http://dx.doi.org/10.1051/shsconf/202214403006
https://doi.org/10.1109/I4Tech55392.2022.9952964

ternational Studies and Evaluations in Computer Engineering,
Stellar Classification with Machine Learning

SDSS17 Sloan Digital Sky Survey Dataset (2021), SDSS17 Sloan Digital Sky
Survey Dataset (2021)

Sabeesh Ethiraj, Bharath Kumar Bolla (2022) ” Classification of Quasars, Galax-
ies, and Stars in the Mapping of the Universe Multi-modal Deep Learning”,
Presented at Deep Learning Developers Conference, 2021, Bangalore
https://arxiv.org/abs/2205.10745

Ahmed Taha Hassina (2023), |Using machine learning to classify and localize
stellar objects

Anisha Bhat, Amisha Mallick, Vishvapriya Sangvikar, Shreya Gholap (2023),
”Stellar classification and analysis using Vision Transformer”, Symbiosis Insti-
tute of Technology, Symbiosis International (Deemed University), Pune,India,
Stellar classification and analysis using Vision Transformer

Michael Brice, Razvan Andonie (2019), ”Classification of Stars using Stellar
Spectra collected by the Sloan Digital Sky Survey”, (Classification of Stars using
Stellar Spectra collected by the Sloan Digital Sky Survey

Jing-Hang Shi , Bo Qiu , A-Li Luo , Zhen-Dong He , Xiao Kong , Xia Jiang
(2022) , 7 A photometry pipeline for SDSS images based on convolutional neural
networks”, /A photometry pipeline for SDSS images

Johanna Pasquet 1 , E. Bertin 2 ; M. Treyer 3 , S. Arnouts 3 , D. Fouchez
(2018) , "Photometric redshifts from SDSS images using a convolutional neural
network”, Photometric redshifts from SDSS images

M. Treyer, R. Ait-Ouahmed, J. Pasquet, S. Arnouts, E. Bertin, D. Fouchez
(2023), ”CNN photometric redshifts in the SDSS at r < 20”7, |CNN photometric
redshifts in the SDSS at r < 20

Krishna Chunduri, Mithun Mahesh (2024), ” Deep Learning Approach to Photo-
metric Redshift”, Deep Learning Approach to Photometric Redshift Estimation

33

https://www.researchgate.net/publication/387903350_STELLAR_CLASSIFICATION_WITH_MACHINE_LEARNING_ALGORITHMS_GRAPH-BASED_FEATURE_SELECTION_APROACH
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17/data
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17/data
https://arxiv.org/abs/2205.10745
https://www.researchgate.net/publication/373219104_Using_machine_learning_to_classify_and_localize_stellar_objects
https://www.researchgate.net/publication/373219104_Using_machine_learning_to_classify_and_localize_stellar_objects
https://www.researchgate.net/publication/376586799_Stellar_Classification_and_Analysis_using_Vision_Transformer
https://ieeexplore.ieee.org/document/8852407
https://ieeexplore.ieee.org/document/8852407
https://academic.oup.com/mnras/article/516/1/264/6653100?login=false
https://www.sciengine.com/AA/doi/10.1051/0004-6361/201833617
https://arxiv.org/abs/2310.02173
https://arxiv.org/abs/2310.02173
https://arxiv.org/pdf/2310.16304

	Introduction
	Related Work
	Classification Models
	Support Vector Classifier (SVC)
	Decision Tree Classifier
	K Nearest Neighbors Classifier
	Naive Bayes Classifier
	Random Forest Classifier
	Convolutional Neural Network (CNN)

	Regression Models
	Support Vector Regression
	Random Forest Regressor
	Decision Tree Regressor
	Linear Regression

	Overview

	Methodology
	Dataset Description
	Preprocessing Steps
	Overview
	Missing Value Handling
	Feature Selection
	Outliers Handling
	Resampling for Class Balance
	Normalization
	Categorical Encoding
	Clustering Integration
	Train-Test Split
	Evaluation Metrics
	Comparative Analysis

	Model Implementation and Overview
	Random Forest Classifier
	Decision Tree Classifier
	K Nearest Neighbors Classifier
	Support Vector Machines
	Naive Bayes
	Convolutional Neural Network (CNN)
	Support Vector Regression
	Random Forest Regression
	Decision Tree Regression
	Linear Regression

	Design Specification
	Clustering
	Hyper parameters

	Implementation
	Transformed Data
	Evaluation Results
	Documentation
	Training Setup
	Programming Environment
	Programming Language
	Libraries Imported
	Hardware Specification

	Evaluation
	Classification Models
	Regression Models
	Comparison Analysis

	Conclusion and Future Work
	Acknowledgments

