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Abstract

Today, artificial intelligence is used in many fields and is showing great per-
formance in a wide range of areas. It can analyse large data sets and provide
accurate predictions in a short period of time. Implementing Machine Learning
Algorithms in Astrophysics where Each Observatory or Satellite Generates an
enormous number of data could help to interpret findings and provide better
insides to data collected. AI Algorithms not only get accurate predictions but
are also quite fast when working with large datasets. They are free of human
error, saving time and they handle tasks that couldn’t be done by humans in
reasonable time. Stellar Classification is a fundamental part of astronomy and
aims to classify stars by their spectral characteristics. This project will clas-
sify astronomical objects to: Star, Quasar or Galaxy by using and comparing
various AI models like: Classification: Support Vector Machines, K-Nearest
Neighbors, Random Forest, Decision Tree, Naive Bayes, Convolutional Neural
Network (CNN); Regression: Support Vector Regression, Decision Tree Regres-
sion, Random Forest Regression, Linear Regression. A key component of this
study is the comparison of model performance on datasets with and without
clustering. Among all models, the Random Forest Classifier trained on non-
clustered data achieved the highest accuracy of 98.32%, slightly outperforming
its clustered counterpart by 0.01%. However, Naive Bayes showed the most
significant improvement with clustering, increasing its accuracy from 91.47% to
94.03%. The CNN model also benefited from clustering, improving its accuracy
from 97.36% to 97.43%. These findings highlight the effectiveness of ensemble
learning techniques and suggest that unsupervised preprocessing like clustering
can enhance performance for specific models. Overall, this study demonstrates
the potential of AI in astrophysical data analysis and the impact of clustering
on model accuracy.
Keywords: stellar classification, comparing various AI models, clus-
tering, Sloan Digital Sky Survey (SSDS)

1 Introduction

This study explores a wide spectrum of machine learning techniques includ-
ing traditional classifiers, regression models, and deep learning architectures for
the task of stellar classification using Sloan Digital Sky Survey (SDSS) data.
It also investigates the impact of clustering method, Gaussian Mixture Model
(GMM), as a preprocessing step to enhance model performance. The dataset
is getting preprocessing, including feature scaling, selection, and balancing, to
ensure proper evaluation. Performance is assessed using metrics such as accu-
racy, precision, recall, F1-score, and R². By comparing models across different
learning techniques and preprocessing strategies, this thesis aims to identify op-
timal approaches for automated stellar classification. Astrophysicists need to
work with enormous datasets that are collected from many observatories and
satellites. Rubin Observatory (Rubin Observatory 2025) collects 20 terabytes
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of data every 24 hours which is like listening Spotify for 50 years or watching
Netflix for three years. (Astrostatistics 2025)Large Synoptic Survey Telescope
(LSST) also produces 20 terabytes of data over one night and there are many
more devices of this type around the Earth and space. Without additional
tools like machine learning preprocesses, these are very large datasets to find
meaningful information’s, patterns, and predictions that could take enormous
amount of human work power. Advancement of machine learning is that these
AI algorithms can work quite fast with these datasets and preprocesses in a rea-
sonable amount of time. AI can predict, and classify stellar objects with very
good accuracy and precision, which provides for astrophysicists great tool that
can speed up they work and save time, eliminating human error and allow to see
patterns/anomalies/outliers across dataset which can hint at new astrophysical
phenomena. Stellar classification is a fundamental part of astronomy, classifying
astronomical objects based on their spectral characteristics, and the accurate
classification of stellar objects is essential for understanding the structure and
evolution of the universe. With the huge data from surveys like SDSS, machine
learning offers scalable solutions to automate this process. In recent years,
many studies have applied machine learning to stellar classification and using
the SDSS dataset with promising results. (Deen Omat at al., (2022)) tested
eight supervised learning models and found that Random Forest achieved 98%
accuracy, correctly classifying all star instances. (Zhuliang Qi at al., (2022))
compared Decision Tree, Random Forest, and Support Vector Machine, report-
ing Random Forest again as the best performer with 98% accuracy. (Tanvi
Mehta at al., (2022)) evaluated six models and concluded that Support Vec-
tor Classifier (SVC) yielded the highest accuracy 97.1%, outperforming others
like KNN and Decision Tree. Mehmet Bilge at al., 2024 enhanced performance
using graph-based feature selection, where XGBoost reached 98.02% accuracy
and 99.81% ROC score, demonstrating the value of feature engineering. While
these studies have made significant progress in applying machine learning to
stellar classification, they often overlook the impact of clustering techniques.
This thesis addresses that gap by evaluating both classification, and regression
models, with and without clustering. It also aims to evaluate the performance
of various AI models, both classification and regression for stellar classification,
and to check the impact of clustering techniques on model accuracy, and finding
out how the clustering techniques affect the performance of AI models. It will
show which model type classification or regression produce higher accuracy for
SDSS data. To ensure the consistency and objectivity of model performance,
this study applies a series of preprocessing techniques to the SDSS dataset.
Feature scaling is performed using StandardScaler, which normalises input data
and prevents models from being biased toward features with larger numerical
ranges. Categorical labels are encoded using LabelEncoder, allowing machine
learning models to interpret non-numeric data effectively. To address class im-
balance, a common issue in astronomical datasets SMOTE (Synthetic Minority
Over-sampling Technique) is employed, generating synthetic samples for mi-
nority classes. Additionally, Local Outlier Factor (LOF) is used to detect and
filter out anomalous data points, improving data quality and reducing noise.
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These preprocessing steps together will improve the model, reduce bias, and
ensure consistent performance across classification and regression tasks. The
thesis is organized as follows: Section 2 (Data Description and Prepossessing),
introduces the dataset and outlines the preprocessing steps applied. Section 3
(Models Overview), describes the machine learning models used for stellar clas-
sification. Section 4 (Methodology), details the experimental design, including
clustering techniques and evaluation metrics. Section 5 (Results and Evalua-
tion), presents the experimental results and discusses key findings. Section 6
(Conclusion and Future Work), summarises the study and proposes directions
for future research. Section 7 (Appendices), provides supplementary materials,
including the sample code and extended outputs. Section 8 (Acknowledgments),
expresses gratitude to the contributors and supporters of the research.

2 Related Work

2.1 Classification Models

2.1.1 Support Vector Classifier (SVC)

Support Vector Machines (SVM) are supervised learning models used for classi-
fication tasks, particularly effective in high-dimensional spaces. In this project,
the LinearSVC variant is employed, which uses a linear kernel to find the opti-
mal hyperplane that separates classes with the maximum margin. In the study
by (Omat et al. (2022)), Support Vector Classification (SVC) was used to clas-
sify stellar objects using data from SDSS DR17, their SVC got 97% accuracy.
While their implementation of SVC contributed to high classification accuracy,
the authors did not address key data preprocessing steps such as class balanc-
ing or outlier elimination. In the study by (Tanvi Mehta at al., (2022)) their
implementation of SVC got 97,1% accuracy but as previous researchers they
didn’t address key data preprocessing steps such as class balancing or outlier
elimination.

2.1.2 Decision Tree Classifier

Decision Tree is a supervised learning algorithm that builds a tree-like model
of decisions based on feature values. Decision Tree is intuitive, interpretable,
and capable of handling both numerical and categorical data. In the study by
(Tanvi Mehta at al., (2022)), their implementation of Decision Tree Classifier
got 86,2% accuracy, but didn’t include any method like Synthetic Minority
Over-sampling Technique (SMOTE) to mitigate class imbalance and applying
statistical methods to detect and remove outliers. In the study by (Zhuliang Qi
at al., (2022)), his implementation of Decision Tree Classifier got 97% accuracy
as the author had used SMOTE to balance data, but didn’t use any method to
detect and remove outliers.
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2.1.3 K Nearest Neighbors Classifier

K-Nearest Neighbors (KNN) is a non-parametric, instance-based learning al-
gorithm that classifies data points based on the majority class among their
nearest neighbours. It is simple yet effective, particularly in cases where deci-
sion boundaries are irregular or non-linear. The model predicts the class of each
test sample by examining the labels of its k closest training samples, measured
using Euclidean distance. In the study by (Mehmet Bilge at al., (2024)), their
implementation got 89,77%, the author had used graph based features selec-
tion, but didn’t implement any methods to amend data unbalance or outliers
elimination.

2.1.4 Naive Bayes Classifier

Naive Bayes Classifier is a probabilistic classifier based on Bayes’ Theorem,
assuming independence among predictors. While being conceptually simple,
it often performs well on high-dimensional datasets and is effective for text
classification and categorical data. In the study of (Tanvi Mehta at al., (2022)),
their implementation of Naive Bayes Classifier got 87,4% accuracy, the authors
hadn’t used any method to deal with unbalanced data, or to detect and remove
outliers. In study by (Omat et al. (2022)), Naive Bayes Classifier got 91%
accuracy as previous author had used no methods for unbalanced data or outlier
elimination.

2.1.5 Random Forest Classifier

Random Forest is an ensemble learning method that constructs a multitude
of decision trees during training and outputs the mode of the classes for clas-
sification tasks. It is particularly robust to over-fitting and performs well on
high-dimensional datasets with complex feature interactions. In the study by
(Mehmet Bilge et al. (2024)), the author implementation got 97.85% accuracy.

2.1.6 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are deep learning architectures primar-
ily designed for spatial data, such as images and time series. They utilize con-
volutional layers to extract hierarchical features, making them highly effective
for pattern recognition tasks. Although CNNs are traditionally applied to 2D
image data, they can be adapted to 1D inputs for classification tasks involv-
ing structured tabular data. In the study by (Jing-Hang et al. (2022)), their
implementation of CNN got 94.4% accuracy in the classification task on SSDS
dataset.
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2.2 Regression Models

2.2.1 Support Vector Regression

Support Vector Regression (SVR) is a powerful supervised learning algorithm
obtained from Support Vector Machines (SVM). SVR is particularly effective in
high-dimensional spaces and for datasets with complex relationships. Couldn’t
find any papers with SVR, probably as it hadn’t performed well.

2.2.2 Random Forest Regressor

The Random Forest Regressor is an ensemble learning method that constructs
multiple decision trees during training and outputs the average prediction of the
individual trees. This approach reduces over-fitting, and improves generalisation
compared to a single decision tree. In the study by (Ahmed Taha et al. (2022)),
the author didn’t use Random Forest Regressor to check if objects are star,
quasar, or galaxy. But they did use it for checking coordinates with high R²,
nearly perfect.

2.2.3 Decision Tree Regressor

Decision Tree Regressor is a non-parametric supervised learning algorithm that
predicts continuous outcomes by recursively partitioning the feature space. It
builds a tree structure, where each internal node represents a decision-based on
feature values, and each leaf node corresponds to a predicted numerical value.
In the study by (Krishna et al. (2024)), the author didn’t use Decision Tree
Regressor to check if objects are star, quasar, or galaxy. But used for checking
redshift estimation with RMS value, which was above 0.16.

2.2.4 Linear Regression

Linear Regression is a fundamental statistical method used to model the rela-
tionship between a dependent variable and one or more independent variables
by fitting a linear equation to observed data.

2.3 Overview

While reviewing existing literature on stellar classification using the SDSS dataset,
it became evident that some techniques have been unexplored. Notably, cluster-
ing algorithms have not been applied in any of the reviewed studies, regardless of
their strength in identifying underlying trends and patterns in unlabelled data.
Additionally, only two papers (Ahmed Taha et al. (2022)), and (Zhuliang Qi
at al., (2022)) were found to implement method for addressing class imbalance,
suggesting that data balancing are rarely implemented in this domain. Further-
more, outlier elimination techniques were used in three papers (Ahmed Taha et
al. (2022)), (Tanvi Mehta at al., (2022)), and (Sabeesh et al. (2022)), even such
preprocessing steps can significantly improve model performance. These gaps
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highlight opportunities for methodological innovation and justify the presence
of these techniques in the present study.

3 Methodology

3.1 Dataset Description

This study uses the Stellar Classification Dataset - SDSS17, publicly available
on Kaggle and originally sourced from the Sloan Digital Sky Survey (SDSS)
Data Release 17. The dataset contains 100,000 astronomical observations, each
described by 17 features and a class label indicating whether the object is a
star, galaxy, or quasar. For this project, a subset of seven features and one class
label was selected for training and evaluation: Photometric measurements: u, g,
r, i, z (capturing brightness across five spectral bands) Spectroscopic redshift:
redshift (indicating the object’s velocity and distance) Instrument metadata:
plate (identifying the spectroscopic plate used during observation). This feature
set enables reliable classification and supports both supervised learning and
preprocessing techniques such as clustering.
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Table 1: Feature Descriptions in the SDSS Dataset

Feature Details

obj ID Object Identifier, the unique value
that identifies the object in the
image catalog used by the CAS

alpha Right Ascension angle (at J2000
epoch)

delta Declination angle (at J2000 epoch)

u Ultraviolet filter in the photometric
system

g Green filter in the photometric
system

r Red filter in the photometric system

i Near Infrared filter in the
photometric system

z Infrared filter in the photometric
system

run ID Run Number used to identify the
specific scan

rerun ID Rerun Number to specify how the
image was processed

cam col Camera column to identify the
scanline within the run

field ID Field number to identify each field

spec obj ID Unique ID used for optical
spectroscopic objects (two
observations with the same ID share
the output class)

class Object class (galaxy, star, or quasar)

redshift Redshift value based on the increase
in wavelength

plate Plate ID, identifies each plate in
SDSS

MJD Modified Julian Date, used to
indicate when a given piece of SDSS
data was taken

fiber ID Fiber ID that identifies the fiber
pointing light at the focal plane in
each observation
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3.2 Preprocessing Steps

3.2.1 Overview

To prepare the dataset for machine learning classification, the following prepro-
cessing steps were applied to the selected features (u, g, r, i, z, redshift, plate,
class) from the SDSS17 dataset:

3.2.2 Missing Value Handling

No missing values were observed in dataset.

3.2.3 Feature Selection

Seven features were selected based on exploratory analysis: five photometric
bands (u, g, r, i, z), redshift, plate and class.

Table 2: Feature Selected from the Dataset.
Feature Details

u Ultraviolet filter in the photometric
system

g Green filter in the photometric
system

r Red filter in the photometric system

i Near Infrared filter in the
photometric system

z Infrared filter in the photometric
system

redshift Redshift value based on the increase
in wavelength

plate Plate ID, identifies each plate in
SDSS

class Object class (galaxy, star, or quasar)

3.2.4 Outliers Handling

Outlier Detection and Removal were identified using the Local Outlier Factor
(LOF) algorithm. A threshold at the 3rd percentile of the LOF scores was used
to filter out around 3,000 anomalous samples.
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Table 3: Number of Observations per Class

Class Observations

Star 59,445

Galaxy 21,594

Quasar 18,961

Table 4: Updated Number of Observations per Class

Class Observations

Star 58,036

Galaxy 20,460

Quasar 18,504

3.2.5 Resampling for Class Balance

To address class imbalance, SMOTE (Synthetic Minority Over-sampling Tech-
nique) was applied with k neighbors=5 and random state = 42. This generated
synthetic samples for the minority classes to balance the distribution:

Table 5: Observations per Class before SMOTE

Class Observations

Star 58,036

Galaxy 20,460

Quasar 18,504

Table 6: Observations per Class after SMOTE

Class Observations

Star 58,036

Galaxy 58,036

Quasar 58,036

3.2.6 Normalization

The features (u, g, r, i, z, redshift, and plate) were standardized using Stan-
dardScaler to ensure a mean of zero and a standard deviation of one across each
feature.
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3.2.7 Categorical Encoding

The class feature was encoded using Label Encoding to convert it into a numer-
ical format suitable for models input.

3.2.8 Clustering Integration

To find patterns, and possibly improve classification and regression performance,
clustering techniques were integrated into the machine learning pipeline. The
Gaussian Mixture Model (GMM) algorithm was chosen as its best for continuous
numerical data, and u, g, r, i, z, redshift → all continuous.

3.2.9 Train-Test Split

The balanced dataset was split into training (80%) and testing (20%) subsets,
to train and evaluate models.

3.2.10 Evaluation Metrics

To evaluate model performance, a set of metrics were applied to both clas-
sification and regression tasks. For classification models, the metrics included
Speed, Accuracy, Precision, Recall, and F1 Score, giving view of predictive qual-
ity and computational efficiency. In addition to these quantitative metrics, a
confusion matrix was generated for each classifier to visually assess the distri-
bution of correct and incorrect predictions across classes. This matrix provided
deeper insight into model behaviour. For regression models, evaluation focused
on Speed, R² Score, Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). These metrics together measure
how well the model fits the data, and how large the prediction errors are. To
deepen the understanding of model behaviour, a residual plot was used to vi-
sualize the difference between actual and predicted values. This plot helped
identify patterns or biases in the predictions, which might not be evident from
metrics alone. Together, these evaluation tools ensured a good assessment of
model performance across both classification and regression tasks.

3.2.11 Comparative Analysis

To evaluate the impact of clustering on model performance, both classification
and regression algorithms, were tested on datasets with and without cluster-
ing. For classification tasks, models such as Random Forest, Decision Tree,
K-Nearest Neighbors, CNN, Naive Bayes, and Support Vector Machines were
assessed using key metrics: speed, accuracy, precision, recall, and F1 score.
Some models trained on clustered data outperformed their non-clustered coun-
terparts. Even algorithms traditionally sensitive to noise, like Naive Bayes,
showed improvement in accuracy, precision, and recall when clustering was ap-
plied.
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3.3 Model Implementation and Overview

3.3.1 Random Forest Classifier

The Random Forest Classifier was implemented using the scikit-learn library.
To determine the optimal number of estimators, a loop was executed from 1 to
19, training the model on the non-clustered and clustered dataset and recording
accuracy for each configuration. The best-performing setup was selected for
both clustered and non-clustered data.

Table 7: Random Forest Classifier Setup Summary

Parameter Details

Library scikit-learn

Hyperparameter Tuned n estimators

Tuning Method Manual iteration with
accuracy tracking

Best Configuration
(Without Clustering)

n estimators = 16

Best Configuration (With
Clustering)

n estimators = 19

Random State 30 (fixed for
reproducibility)

For evaluation preparation confusion matrices were generated for both clustered
and non-clustered cases to visualize classification performance. The model was
timed during training and prediction to assess computational efficiency. Accu-
racy, precision, recall, and F1 score were calculated using weighted averages.

3.3.2 Decision Tree Classifier

The Decision Tree Classifier was implemented using the scikit-learn library with
default parameters. No hyperparameter tuning was performed, as the model was
intended to serve as a baseline for comparison. The classifier was trained and
tested on both clustered and non-clustered datasets to evaluate the impact of
clustering on performance.
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Table 8: Decision Tree Classifier Setup Summary

Parameter Details

Library scikit-learn

Hyperparameters Tuned None (default
configuration)

Tuning Method Not applicable

Best Configuration
(Without Clustering)

Default

Best Configuration (With
Clustering)

Default

Random State 30 (fixed for
reproducibility)

For evaluation preparation confusion matrices were generated to visualize clas-
sification accuracy. Execution time was recorded to assess computational effi-
ciency. Accuracy, precision, recall, and F1 score were calculated using weighted
averages.

3.3.3 K Nearest Neighbors Classifier

The K Nearest Neighbors (KNN) Classifier was implemented using the scikit-
learn library. To determine the optimal number of neighbors (n neighbors), a
loop was executed from 1 to 19, and accuracy was recorded for each config-
uration. The best-performing value was selected for both clustered and non-
clustered datasets.

Table 9: K Nearest Neighbors Classifier Setup Summary

Parameter Details

Library scikit-learn

Hyperparameters Tuned n neighbors

Tuning Method Manual loop from 1 to 19

Best Configuration
(Without Clustering)

n neighbors = 1

Best Configuration (With
Clustering)

n neighbors = 1

Distance Metric minkowski with p = 2

(equivalent to
Euclidean)(default)

Weighting uniform (default)
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For evaluation preparation confusion matrix was plotted for visual inspection
of classification performance. Execution time recorded to assess computational
efficiency. Accuracy, precision, recall, and F1 score calculated using weighted
averages.

3.3.4 Support Vector Machines

Support Vector Machines were implemented using LinearSVC from scikit-learn,
wrapped in a pipeline with StandardScaler for feature normalization. Hyperpa-
rameter tuning was performed using grid search with 5-fold cross-validation to
identify the best configuration for both clustered and non-clustered datasets.

Table 10: Support Vector Machines Setup Summary

Parameter Details

Library scikit-learn

Model Used LinearSVC

Preprocessing StandardScaler (via
pipeline)

Hyperparameters Tuned C, penalty, loss

Tuning Method GridSearchCV with 5-fold
cross-validation

Best Configuration
(Without Clustering)

C = 150, penalty =

’l2’, loss =

’squared hinge’

Best Configuration (With
Clustering)

C = 180, penalty =

’l2’, loss =

’squared hinge’

Max Iterations 10000

For evaluation preparation confusion matrix was plotted to visualize classifica-
tion performance. Execution time recorded to assess computational efficiency.
Accuracy, precision, recall, and F1 score calculated using weighted averages.

3.3.5 Naive Bayes

The Naive Bayes Classifier was implemented using the GaussianNB model from
the scikit-learn library. No hyperparameter tuning was performed, as the algo-
rithm is inherently simple and relies on probabilistic assumptions. The model
was trained and evaluated on both clustered and non-clustered datasets to assess
the impact of clustering on classification performance.
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Table 11: Naive Bayes Classifier Setup Summary

Parameter Details

Library scikit-learn

Model Used GaussianNB

Hyperparameters Tuned None (default
configuration)

Tuning Method Not applicable

Best Configuration
(Without Clustering)

Default

Best Configuration (With
Clustering)

Default

Random State Not applicable

For evaluation preparation confusion matrices were generated to visualize classi-
fication performance. Execution time was recorded to assess computational effi-
ciency. Accuracy, precision, recall, and F1 score were calculated using weighted
averages.

3.3.6 Convolutional Neural Network (CNN)

In this study, a 1D CNN was implemented using TensorFlow/Keras to classify
stellar objects from the SDSS dataset. The input features were reshaped to
match the expected format for convolutional layers. The architecture consisted
of a two Conv1D layer followed by a Flatten layer and a Dense output layer
with softmax activation for multiclass classification. To optimize performance,
a grid search was conducted using KerasClassifier to explore hyperparameters.
The best-performing configuration for data with clustering was selected based
on validation accuracy.
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Table 12: CNN Classifier Setup Summary

Parameter With Clustering Without
Clustering

Library Keras + TensorFlow Keras + TensorFlow

Model Type Conv1D Conv1D

Conv1D Activation relu relu

Output Layer
Activation

softmax softmax

Filters 64 64

Kernel Size 2 2

Optimizer adam adam

Epochs 100 80

Best Accuracy 97.43% 97.36%

For evaluation preparation confusion matrix and classification report were gen-
erated. Execution time was recorded. Accuracy, precision, recall, and F1 score
were computed using weighted averages.

3.3.7 Support Vector Regression

Support Vector Regression was implemented using LinearSVR from scikit-learn,
wrapped in a pipeline with StandardScaler to normalize input features. Hyper-
parameter tuning was conducted using GridSearchCV to optimize performance
for both clustered and non-clustered datasets.

Table 13: Support Vector Regression Setup Summary

Parameter With Clustering Without
Clustering

Library scikit-learn scikit-learn

Model Used LinearSVR LinearSVR

C 0.1 0.1

Epsilon 0.0 0.0

Loss Function
squared

epsilon insensitive

squared

epsilon insensitive

Scaler StandardScaler StandardScaler

Max Iterations 10000 10000

Best R² Score 0.2434 0.2434
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For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R², Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.8 Random Forest Regression

Random Forest Regression was implemented using RandomForestRegressor from
scikit-learn. Hyperparameter tuning was performed using GridSearchCV to find
best configuration for both clustered and non-clustered datasets.

Table 14: Random Forest Regression Setup Summary

Parameter With Clustering Without
Clustering

Library scikit-learn scikit-learn

Model Used
RandomForest

Regressor

RandomForest

Regressor

n estimators 500 500

max depth None None

min samples split 2 2

min samples leaf 1 1

Scoring Metric R² R²
Best R² Score 0.9761 0.9759

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R², Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.9 Decision Tree Regression

Decision Tree Regression was implemented using DecisionTreeRegressor from
scikit-learn. Hyperparameter tuning was performed using GridSearchCV to
find best configuration for both clustered and non-clustered datasets.
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Table 15: Decision Tree Regression Setup Summary

Parameter With Clustering Without
Clustering

Library scikit-learn scikit-learn

Model Used
DecisionTree

Regressor

DecisionTree

Regressor

max depth 20 20

min samples split 15 10

min samples leaf 6 6

max features None None

Scoring Metric R² R²
Best R² Score 0.9641 0.9634

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R², Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

3.3.10 Linear Regression

Linear Regression was implemented using LinearRegression from scikit-learn.
Hyperparameter tuning was performed using GridSearchCV to find best config-
uration for both clustered and non-clustered datasets.

Table 16: Linear Regression Setup Summary

Parameter With Clustering Without
Clustering

Library scikit-learn scikit-learn

Model Used
Linear

Regression

Linear

Regression

fit intercept True True

positive False False

Scoring Metric R² R²
Best R² Score 0.2434 0.2434

For evaluation preparation residual plots were generated to visualize prediction
errors. Execution time was recorded. Regression metrics included R², Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).
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4 Design Specification

4.1 Clustering

A Gaussian Mixture Model (GMM), is a probabilistic model that assumes your
data is generated from a mixture of several Gaussian distributions, each repre-
senting a cluster. Unlike hard clustering methods like k-means, GMMs perform
soft clustering, assigning probabilities to each data point for belonging to each
cluster. Before using GMM, Principal Component Analysis (PCA) was used to
help clustering algorithms like GMM find better groupings. Principal Compo-
nent Analysis (PCA) is a dimensionality reduction method. It transforms your
original features (like u, g, r, i, z, redshift, plate) into a new set of features called
principal components. These components capture the most important patterns
in the data while reducing noise and redundancy.

4.2 Hyper parameters

To optimize model performance, a combination of hyper-parameter tuning strate-
gies was employed across different classifiers. For models such as Support Vector
Machines (SVM), Convolutional Neural Network (CNN), and Support Vector
Regression (SVR), a systematic approach using GridSearchCV with 5-fold cross-
validation was applied. This allowed for an exhaustive search over predefined
parameter grids. For other models, including the Random Forest Classifier and
K Nearest Neighbors Classifier a manual loop was executed to iterate over a
range of n estimators values (from 1 to 19), recording accuracy for each con-
figuration and selecting the best-performing setup. Some models, such as the
Decision Tree Classifier and Naive Bayes, were implemented using default pa-
rameters to serve as baselines. This mixed approach balanced computational
efficiency with thorough exploration, ensuring each model was tuned appropri-
ately for both clustered and non-clustered datasets.

5 Implementation

5.1 Transformed Data

The raw SDSS dataset was cleaned and preprocessed, including handling miss-
ing values, normalization of features, outliers elimination, reassembling for class
balance, categorical encoding, and selection of attributes (u, g, r, i, z, redshift,
plate). Later for comparison second dataset was created with integrated clus-
tering.

5.2 Evaluation Results

Each regression model was evaluated using metrics such as Speed, R², MSE,
RMSE, MAE. Each classification model was evaluated using metrics such as
Speed, Accuracy, Precision, Recall, F1 Score.
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5.3 Documentation

Detailed report was compiled. Including methodology, results, and comparative
analysis of model performance.

5.4 Training Setup

5.4.1 Programming Environment

For this study Jupiter Notebook was used.

5.4.2 Programming Language

For this study Python 3.x was used as programming language.
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5.4.3 Libraries Imported

Table 17: Imported Libraries and Tools Used in Thesis

Category Libraries / Tools

Data Handling numpy, pandas

Model Selection train test split, GridSearchCV

Clustering Gaussian Mixture Model (GMM)
and Principal Component Analysis
(PCA)

Preprocessing StandardScaler, LabelEncoder,
SMOTE, make pipeline

Visualization matplotlib.pyplot, seaborn

Classification Models SVC, LinearSVC,
KNeighborsClassifier,
RandomForestClassifier,
DecisionTreeClassifier, GaussianNB

Regression Models SVR, LinearSVR,
DecisionTreeRegressor,
RandomForestRegressor,
LinearRegression

Deep Learning tensorflow, Keras layers (Dense,
Dropout, Conv1D, etc.), Sequential,
to categorical

Model Wrapping scikeras (KerasClassifier)

Evaluation Metrics accuracy score, confusion matrix,
precision score, recall score,
f1 score, classification report,
r2 score

Outlier Detection LocalOutlierFactor

Warnings Handling ConvergenceWarning, warnings

Utilities datetime, sklearn.pipeline,
sklearn.exceptions

5.4.4 Hardware Specification

Processor: AMD Ryzen 7 7800X3D 8-Core Processor, 4201 Mhz, 8 Core(s), 16
Logical Processor(s)
OS Name: Microsoft Windows 11 Home
Total Physical Memory: 31.1 GB
Hard Drive: SSD
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6 Evaluation

This section presents a detailed evaluation of the machine learning models ap-
plied to both classification and regression tasks on the Sloan Digital Sky Survey
(SDSS17) dataset. The performance of each model was assessed using a range of
metrics. For classification, metrics such as accuracy, precision, recall, F1 score,
and execution time were computed using weighted averages to account for class
imbalance and confusion matrix was generated for each model. For regression,
evaluation included R² score, Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), execution time, and the resid-
ual plot was created. Additionally, the impact of clustering as a preprocessing
step was analysed by comparing model performance on clustered versus non-
clustered datasets. The results are presented in tabular form to provide clear
comparison and interpretation.

6.1 Classification Models

Table 18: Classification Model Performance Comparison (Without Clustering)

Algorithm Speed Accuracy Precision Recall F1
Score

Random
Forest
Classifier

00:00:04.448 98.322% 0.983273 0.983229 0.983220

K
Nearest
Neigh-
bors
Classifier

00:00:00.852 97.648% 0.976705 0.976480 0.976355

CNN 00:06:34.250 97.361% 0.973568 0.973609 0.973563

Decision
Tree
Classifier

00:00:01.364 97.275% 0.972760 0.972747 0.972741

Support
Vector
Machines

00:00:00.343 94.664% 0.946934 0.946643 0.946549

Naive
Bayes

00:00:00.020 91.465% 0.915836 0.914652 0.914548
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Table 19: Classification Model Performance Comparison (With Clustering)

Algorithm Speed Accuracy Precision Recall F1
Score

Random
Forest
Classifier

00:00:04.854 98.314% 0.983173 0.983143 0.983132

K
Nearest
Neigh-
bors
Classifier

00:00:00.926 97.605% 0.976277 0.976050 0.975921

CNN 00:08:05.782 97.427% 0.974240 0.974269 0.974232

Decision
Tree
Classifier

00:00:01.394 97.344% 0.973443 0.973436 0.973433

Support
Vector
Machines

00:00:00.392 95.095% 0.950908 0.950951 0.950884

Naive
Bayes

00:00:00.024 94.033% 0.941266 0.940325 0.940391

Table 19 and Table 18 present a performance comparison of classification mod-
els trained on clustered and non-clustered datasets. The integration of cluster-
ing techniques into the classification pipeline provide improvements across sev-
eral models. While overall accuracy remained relatively stable, slight increase
in precision, recall, and F1 score were observed in models such as CNN and
Support Vector Machines, suggesting enhanced sensitivity to underlying data
structures. For instance, CNN F1 score increased from 0.973563 to 0.974232,
and SVM accuracy increased from 94.664% to 95.095%. These change indicate
that clustering may help models better capture latent patterns in complex or
imbalanced datasets. Interestingly, Naive Bayes and KNN also showed slight
improvements in recall and precision, showing that clustering can enhance per-
formance. However, the Random Forest Classifier maintained nearly identical
performance, demonstrating that its ensemble nature already captures much of
the data variability. Overall, the results support the presence of clustering as a
valuable preprocessing step, especially for models sensitive to data distribution.
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Table 20: Precision Comparison of Classification Models

Algorithm With Clustering Without
Clustering

Random Forest 0.983173 0.983273

Naive Bayes 0.941266 0.915836

Decision Tree 0.973443 0.972760

CNN 0.974240 0.973568

KNN 0.976277 0.976705

SVM 0.950908 0.946934

Table 21: Accuracy Comparison of Classification Models

Algorithm With Clustering Without
Clustering

Random Forest 98.314% 98.322%

Naive Bayes 94.033% 91.465%

Decision Tree 97.344% 97.275%

CNN 97.427% 97.361%

KNN 97.605% 97.648%

SVM 95.095% 94.664%

Table 22: Speed Comparison of Classification Models

Algorithm With Clustering Without
Clustering

Random Forest 00:00:04.854 00:00:04.448

Naive Bayes 00:00:00.024 00:00:00.020

Decision Tree 00:00:01.394 00:00:01.364

CNN 00:08:05.782 00:06:34.250

KNN 00:00:00.926 00:00:00.852

SVM 00:00:00.392 00:00:00.343
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Table 23: Recall Comparison of Classification Models

Algorithm With Clustering Without
Clustering

Random Forest 0.983143 0.983229

Naive Bayes 0.940325 0.914652

Decision Tree 0.973436 0.972747

CNN 0.974269 0.973609

KNN 0.976050 0.976480

SVM 0.950951 0.946643

Table 24: F1 Score Comparison of Classification Models

Algorithm With Clustering Without
Clustering

Random Forest 0.983132 0.983220

Naive Bayes 0.940391 0.914548

Decision Tree 0.973433 0.972741

CNN 0.974232 0.973563

KNN 0.975921 0.976355

SVM 0.950884 0.946549

Table 25: Confusion Matrix of Random Forest Classifier with Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11547 193 39

Quasar 355 11127 0

Star 0 0 11561

Table 26: Confusion Matrix of Random Forest Classifier without Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11558 188 33

Quasar 362 11120 0

Star 1 0 11560
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Table 27: Confusion Matrix of Decision Tree Classifier with clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11280 468 31

Quasar 397 11085 0

Star 28 1 11532

Table 28: Confusion Matrix of Decision Tree Classifier without Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11251 497 31

Quasar 397 11085 0

Star 24 0 11537

Table 29: Confusion Matrix of K Nearest Neighbors Classifier with Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11109 397 273

Quasar 121 11355 6

Star 34 3 11524

Table 30: Confusion Matrix of K Nearest Neighbors Classifier without Cluster-
ing

Actual / Predicted Galaxy Quasar Star

Galaxy 11119 388 272

Quasar 117 11359 6

Star 33 3 11525

Table 31: Confusion Matrix of Support Vector Machines Classifier with Clus-
tering

Actual / Predicted Galaxy Quasar Star

Galaxy 10816 831 132

Quasar 663 10819 0

Star 82 0 11479

26



Table 32: Confusion Matrix of Support Vector Machines Classifier without Clus-
tering

Actual / Predicted Galaxy Quasar Star

Galaxy 10617 1029 133

Quasar 583 10899 0

Star 112 1 11448

Table 33: Confusion Matrix of Naive Bayes Classifier with Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11105 573 101

Quasar 1220 10262 0

Star 91 93 11377

Table 34: Confusion Matrix of Naive Bayes Classifier without Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 9923 1752 104

Quasar 1012 10470 0

Star 43 61 11457

Table 35: Confusion Matrix of Convolutional Neural Network (CNN) Classifier
with Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11360 311 108

Quasar 464 11017 1

Star 12 0 11549

Table 36: Confusion Matrix of Convolutional Neural Network (CNN) Classifier
without Clustering

Actual / Predicted Galaxy Quasar Star

Galaxy 11342 313 124

Quasar 472 11008 2

Star 8 0 11553
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6.2 Regression Models

Table 37: Regression Model Performance Comparison (With Clustering)

Algorithm Speed R2 MSE RMSE MAE

Random
Forest
Regressor

00:06:14.8826170.976096 0.016021 0.126576 0.032079

Decision
Tree
Regressor

00:00:01.1507200.964105 0.024058 0.155106 0.032549

Support
Vector
Regres-
sion

00:00:00.0860130.243453 0.507058 0.712080 0.578549

Linear
Regres-
sion

00:00:00.0125130.243407 0.507089 0.712102 0.578461

Table 38: Regression Model Performance Comparison (Without Clustering)

Algorithm Speed R2 MSE RMSE MAE

Random
Forest
Regressor

00:05:59.6362760.975925 0.016136 0.127026 0.032488

Decision
Tree
Regressor

00:00:01.1313810.963368 0.024552 0.156691 0.032306

Support
Vector
Regres-
sion

00:00:00.0720100.243372 0.507112 0.712118 0.579537

Linear
Regres-
sion

00:00:00.0095010.243360 0.507120 0.712124 0.579509

Table 37 and Table 38 present a performance comparison of regression models
trained on clustered and non-clustered datasets. The comparative analysis of
regression models reveals that clustering integration has a modest but consis-
tent impact on performance. The Random Forest Regressor show as the top
performer in both scenarios, achieving an R² score of 0.9761 with clustering and
0.9759 without, and the lowest MSE, RMSE, and MAE values. This highlights
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the good performance capability across different data distributions. The De-
cision Tree Regressor also benefited slightly from clustering, improving its R²
from 0.9634 to 0.9641 and reducing error metrics slightly. In contrast, Support
Vector Regression and Linear Regression showed bad performance between the
two setups, both maintaining low R² scores ( 0.243) and high error rates, indicat-
ing limited suitability for this task regardless of clustering. Overall, clustering
enhances model precision slightly for tree-based regressor, while linear models
remain unaffected. These findings support the use of clustering as a preprocess-
ing step when deploying ensemble or tree-based regression algorithms.

Table 39: Execution Time Comparison of Regression Models

Algorithm With Clustering Without
Clustering

Random Forest Re-
gressor

00:06:14.882617 00:05:59.636276

Decision Tree Regres-
sor

00:00:01.150720 00:00:01.131381

Support Vector Re-
gression

00:00:00.086013 00:00:00.072010

Linear Regression 00:00:00.012513 00:00:00.009501

Table 40: R² Score Comparison of Regression Models

Algorithm With Clustering Without
Clustering

Random Forest Re-
gressor

0.976096 0.975925

Decision Tree Regres-
sor

0.964105 0.963368

Support Vector Re-
gression

0.243453 0.243372

Linear Regression 0.243407 0.243360
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Table 41: Mean Squared Error (MSE) Comparison of Regression Models

Algorithm With Clustering Without
Clustering

Random Forest Re-
gressor

0.016021 0.016136

Decision Tree Regres-
sor

0.024058 0.024552

Support Vector Re-
gression

0.507058 0.507112

Linear Regression 0.507089 0.507120

Table 42: Root Mean Squared Error (RMSE) Comparison of Regression Models

Algorithm With Clustering Without
Clustering

Random Forest Re-
gressor

0.126576 0.127026

Decision Tree Regres-
sor

0.155106 0.156691

Support Vector Re-
gression

0.712080 0.712118

Linear Regression 0.712102 0.712124

Table 43: Mean Absolute Error (MAE) Comparison of Regression Models

Algorithm With Clustering Without
Clustering

Random Forest Re-
gressor

0.032079 0.032488

Decision Tree Regres-
sor

0.032549 0.032306

Support Vector Re-
gression

0.578549 0.579537

Linear Regression 0.578461 0.579509

6.3 Comparison Analysis

Classification Models: Random Forest Classifier consistently outperforms other
models in terms of accuracy, precision, recall, and F1 score, achieving over
98.3% accuracy in both clustered and non-clustered scenarios. KNN and CNN
follow closely, with CNN showing slightly improved metrics when clustering is
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applied. Notable, Naive Bayes benefits significantly from clustering, with its
accuracy rising from 91.47% to 94.03%, suggesting that clustering may enhance
performance for some models. Support Vector Machines also show a modest
improvement in all metrics post-clustering.

Regression Models: Random Forest Regressor again with the highest R² score
( 0.976), lowest MSE ( 0.016), and minimal MAE ( 0.032), regardless of clus-
tering. Decision Tree Regressor performs well but slightly below Random For-
est. Linear Regression and Support Vector Regression exhibit poor performance
across all regression metrics, with R² scores around 0.243 and high error values
(MSE ¿ 0.5, RMSE ¿ 0.71, MAE ¿ 0.57), indicating limited suitability for the
dataset used. Clustering has small impact on regression performance, except
for marginal improvements in execution time and error reduction.

Overall Insight: Random Forest emerges as the best performer and reliable
model across both classification and regression tasks. Clustering provides slight
improvements in classification metrics for Naive Bayes and SVM, but has min-
imal influence on regression.

7 Conclusion and Future Work

This study investigated the performance of various machine learning models on
SDSS photometric data and evaluated the impact of clustering on both classifica-
tion and regression tasks. The results demonstrate that clustering can enhance
some models performance by improving data structure, reducing noise, and re-
vealing hidden patterns. Artificial Intelligence proves to be a highly effective
and scalable solution for stellar classification, capable of handling large datasets
with precision and speed. In classification, the Random Forest Classifier trained
on non-clustered data achieved the highest accuracy of 98.32%, outperforming
all other models. However, lightweight models such as Naive Bayes benefited
significantly from clustering, with accuracy increasing from 91.46% to 94.03%.
The Convolutional Neural Network (CNN) also showed a modest improvement,
achieving 97.43% accuracy on clustered data compared to 97.36% without clus-
tering. In regression tasks, all models with clustering dataset got slightly better
results indicating that clustering contributes positively to predictive accuracy
across different models.

Future enhancements could include applying Bayesian optimisation or genetic
algorithms for more efficient hyper-parameter tuning. Applying pre-trained
models from similar astronomical datasets may accelerate learning and improve
accuracy. Additionally, deploying models on cloud platforms with distributed
computing could enable real-time classification of massive datasets. Try different
clustering algorithms like DBSCAN, K-Means or Spectral Clustering which may
uncover different structures in the data.
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